BudgetOptimizer

experimental.budget_optimization.optimizer.BudgetOptimizer(
    self,
    objective,
    constraints,
    parametrization_transform=None,
    method='SLSQP',
    tol=None,
    bounds=None,
    options=None,
    callback=None,
)

Budget optimizer using scipy.optimize.minimize.

Parameters

Name Type Description Default
objective BaseOptimizationObjective Objective function object required
constraints list of BaseConstraint List of constraint objects required
decision_variable_transform BaseDecisionVariableTransform Decision variable transform object required
method str Optimization method to use. Default is “SLSQP”. 'SLSQP'
tol float Tolerance for termination. Default is None. None
bounds Union[List[tuple], dict[str, tuple]] Bounds for decision variables. If a list, the value is used directly in scipy.optimize.minimize. If a dict, the keys are the column names and the values are the bounds for each column. Default is (0, np.inf) for each column. None
options dict Options for the optimization method. Default is None. None
callback callable Callback function to be called after each iteration. Default is None. None

Methods

Name Description
wrap_func_with_inv_transform Wrap a function with parametrization inverse transform

wrap_func_with_inv_transform

experimental.budget_optimization.optimizer.BudgetOptimizer.wrap_func_with_inv_transform(
    fun,
)

Wrap a function with parametrization inverse transform