BudgetOptimizer
experimental.budget_optimization.optimizer.BudgetOptimizer(self,
objective,
constraints,=None,
parametrization_transform='SLSQP',
method=None,
tol=None,
bounds=None,
options=None,
callback )
Budget optimizer using scipy.optimize.minimize.
Parameters
Name | Type | Description | Default |
---|---|---|---|
objective | BaseOptimizationObjective | Objective function object | required |
constraints | list of BaseConstraint | List of constraint objects | required |
decision_variable_transform | BaseDecisionVariableTransform | Decision variable transform object | required |
method | str | Optimization method to use. Default is “SLSQP”. | 'SLSQP' |
tol | float | Tolerance for termination. Default is None. | None |
bounds | Union[List[tuple], dict[str, tuple]] | Bounds for decision variables. If a list, the value is used directly in scipy.optimize.minimize. If a dict, the keys are the column names and the values are the bounds for each column. Default is (0, np.inf) for each column. | None |
options | dict | Options for the optimization method. Default is None. | None |
callback | callable | Callback function to be called after each iteration. Default is None. | None |
Methods
Name | Description |
---|---|
wrap_func_with_inv_transform | Wrap a function with parametrization inverse transform |
wrap_func_with_inv_transform
experimental.budget_optimization.optimizer.BudgetOptimizer.wrap_func_with_inv_transform(
fun, )
Wrap a function with parametrization inverse transform