Hierarchical Bayesian Model

A tutorial demonstrating how to leverage hierarchical bayesian models to forecast panel timeseries

In this example, we will show how to forecast panel timeseries with the Prophetverse model.

The univariate Prophetverse model can seamlessly handle hierarchical timeseries due to the package’s compatibility with sktime.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from prophetverse.datasets.loaders import load_tourism

Import dataset

Here we use the tourism dataset with purpose-level aggregation.

y = load_tourism(groupby="Purpose")
display(y)
Trips
Purpose Quarter
Business 1998Q1 7391.962068
1998Q2 7701.153191
1998Q3 8911.852065
1998Q4 7777.766525
1999Q1 6917.257864
... ... ...
__total 2015Q4 51518.858354
2016Q1 54984.720748
2016Q2 49583.595515
2016Q3 49392.159616
2016Q4 54034.155613

380 rows × 1 columns

We define the helper function below to plot the predictions and the observations.

LEVELS = y.index.get_level_values(0).unique()


def plot_preds(y=None, preds={}, axs=None):

    if axs is None:
        fig, axs = plt.subplots(
            figsize=(12, 8), nrows=int(np.ceil(len(LEVELS) / 2)), ncols=2
        )
    ax_generator = iter(axs.flatten())
    for level in LEVELS:
        ax = next(ax_generator)
        if y is not None:
            y.loc[level].iloc[:, 0].rename("Observation").plot(
                ax=ax, label="truth", color="black"
            )
        for name, _preds in preds.items():
            _preds.loc[level].iloc[:, 0].rename(name).plot(ax=ax, legend=True)
        ax.set_title(level)

    # Tight layout
    plt.tight_layout()
    return ax

Automatic upcasting

Because of sktime’s amazing interface, we can use the univariate Prophet seamlessly with hierarchical data.

import jax.numpy as jnp

from prophetverse.effects import LinearFourierSeasonality
from prophetverse.effects.trend import PiecewiseLinearTrend, PiecewiseLogisticTrend
from prophetverse.engine import MAPInferenceEngine, MCMCInferenceEngine
from prophetverse.sktime.univariate import Prophetverse
from prophetverse.utils import no_input_columns
from prophetverse.engine.optimizer import LBFGSSolver

model = Prophetverse(
    trend=PiecewiseLogisticTrend(
        changepoint_prior_scale=0.1,
        changepoint_interval=8,
        changepoint_range=-8,
    ),
    exogenous_effects=[
        (
            "seasonality",
            LinearFourierSeasonality(
                sp_list=["YE"],
                fourier_terms_list=[1],
                freq="Q",
                prior_scale=0.1,
                effect_mode="multiplicative",
            ),
            no_input_columns,
        )
    ],
    inference_engine=MCMCInferenceEngine(
        num_warmup=500,
        num_samples=1000,
    ),
)
model.fit(y=y)
Prophetverse(exogenous_effects=[('seasonality',
                                 LinearFourierSeasonality(effect_mode='multiplicative',
                                                          fourier_terms_list=[1],
                                                          freq='Q',
                                                          prior_scale=0.1,
                                                          sp_list=['YE']),
                                 '^$')],
             inference_engine=MCMCInferenceEngine(num_warmup=500),
             trend=PiecewiseLogisticTrend(changepoint_interval=8,
                                          changepoint_prior_scale=0.1,
                                          changepoint_range=-8))
Please rerun this cell to show the HTML repr or trust the notebook.

We can see how, internally, sktime creates clones of the model for each timeseries instance:

model.forecasters_
forecasters
Business Prophetverse(exogenous_effects=[('seasonality'...
Holiday Prophetverse(exogenous_effects=[('seasonality'...
Other Prophetverse(exogenous_effects=[('seasonality'...
Visiting Prophetverse(exogenous_effects=[('seasonality'...
__total Prophetverse(exogenous_effects=[('seasonality'...

To call the same methods we used in the univariate case, we do not need to change a single line of code. The only difference is that the output will be a pd.DataFrame with more rows and index levels.

forecast_horizon = pd.period_range("1997Q1",
                                   "2020Q4",
                                   freq="Q")
preds = model.predict(fh=forecast_horizon)
display(preds.head())

# Plot
plot_preds(y, {"Prophet": preds})
plt.show()
Trips
Purpose Quarter
Business 1997Q1 7072.360840
1997Q2 8001.782715
1997Q3 8919.611328
1997Q4 7981.878418
1998Q1 7072.360840

The same applies to the decomposition method:

decomposition = model.predict_components(fh=forecast_horizon)
decomposition.head()
mean obs seasonality trend
Business 1997Q1 7072.360840 7078.845703 -923.445984 7995.806641
1997Q2 8001.782715 7961.663086 5.976065 7995.806641
1997Q3 8919.611328 8937.083008 923.805542 7995.806641
1997Q4 7981.878418 7955.804199 -13.926888 7995.806641
1998Q1 7072.360840 7057.951660 -923.445984 7995.806641

Hierarchical Bayesian model

Sometimes, we want to capture patterns shared between the different series, such as seasonality or trend. In this case, we can use a Bayesian Hierarchical Model.

A Bayesian Hierarchical Model sets hyperpriors: global priors over the priors for each timeseries. These hyperpriors allow us to share information across the different series, which can lead to better forecasts, especially when some series have very few observations.

To do that, we just need to use PanelBHLinearEffect as the seasonality__linear_effect parameter in the model. This effect will automatically create a hierarchical model for the linear effects, allowing us to share information across the different series. Also, let us set the broadcast_mode to “off” to use a single model to all the series.

from prophetverse.effects.linear import PanelBHLinearEffect

from numpyro import distributions as dist

model_hier = model.clone()
model_hier.set_params(
    seasonality__linear_effect=PanelBHLinearEffect(
        scale_hyperprior=dist.HalfNormal(0.1)
    ),
    broadcast_mode="effect",
)
model_hier.fit(y=y)
Prophetverse(broadcast_mode='effect',
             exogenous_effects=[('seasonality',
                                 LinearFourierSeasonality(effect_mode='multiplicative',
                                                          fourier_terms_list=[1],
                                                          freq='Q',
                                                          linear_effect=PanelBHLinearEffect(scale_hyperprior=<numpyro.distributions.continuous.HalfNormal object at 0x7f967441dc50 with batch shape () and event shape ()>),
                                                          prior_scale=0.1,
                                                          sp_list=['YE']),
                                 '^$')],
             inference_engine=MCMCInferenceEngine(num_warmup=500),
             trend=PiecewiseLogisticTrend(changepoint_interval=8,
                                          changepoint_prior_scale=0.1,
                                          changepoint_range=-8))
Please rerun this cell to show the HTML repr or trust the notebook.
preds_hier = model_hier.predict(fh=forecast_horizon)

plot_preds(
    y,
    preds={
        "Prophet": preds,
        "HierarchicalProphet": preds_hier,
    },
)