Univariate Prophet
Bases: BaseProphetForecaster
Univariate Prophetverse
forecaster, with support for multiple likelihoods.
Differences to facebook's prophet:
-
logistic trend. Here, another parametrization is considered, and the capacity is not passed as input, but inferred from the data.
-
the users can pass arbitrary
sktime
transformers asfeature_transformer
, for instanceFourierFeatures
orHolidayFeatures
. -
no default weekly_seasonality/yearly_seasonality, this is left to the user via the
feature_transformer
parameter -
Uses
changepoint_interval
instead ofn_changepoints
to set changepoints. -
accepts configurations where each exogenous variable has a different function relating it to its additive effect on the time series. One can, for example, set different priors for a group of feature, or use a Hill function to model the effect of a feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trend |
Union[str, BaseEffect], optional, one of "linear" (default) or "logistic"
|
Type of trend to use. Can also be a custom effect object. |
'linear'
|
changepoint_interval |
int
|
Number of potential changepoints to sample in the history. |
25
|
changepoint_range |
float or int
|
Proportion of the history in which trend changepoints will be estimated.
|
0.8
|
changepoint_prior_scale |
float
|
Regularization parameter controlling the flexibility of the automatic changepoint selection. |
0.001
|
offset_prior_scale |
float
|
Scale parameter for the prior distribution of the offset. The offset is the constant term in the piecewise trend equation. |
0.1
|
capacity_prior_scale |
float
|
Scale parameter for the prior distribution of the capacity. |
0.2
|
capacity_prior_loc |
float
|
Location parameter for the prior distribution of the capacity. |
1.1
|
feature_transformer |
sktime transformer, BaseTransformer
|
Transformer object to generate Fourier terms, holiday or other features.
If None, no additional features are used.
For multiple features, pass a |
None
|
noise_scale |
float
|
Scale parameter for the observation noise. |
0.05
|
mcmc_samples |
int
|
Number of MCMC samples to draw. |
2000
|
mcmc_warmup |
int
|
Number of MCMC warmup steps. Also known as burn-in. |
200
|
mcmc_chains |
int
|
Number of MCMC chains to run in parallel. |
4
|
inference_method |
str, optional, one of "mcmc" or "map"
|
Inference method to use. Can be "mcmc" or "map". |
"map"
|
optimizer_name |
str
|
Name of the numpyro optimizer to use for variational inference. |
"Adam"
|
optimizer_kwargs |
dict
|
Additional keyword arguments to pass to the numpyro optimizer. |
{}
|
optimizer_steps |
int
|
Number of optimization steps to perform for variational inference. |
100_000
|
exogenous_effects |
List[AbstractEffect]
|
A list of |
None
|
likelihood |
str
|
Likelihood to use for the model. Can be "normal", "gamma" or "negbinomial". |
"normal"
|
default_effect |
AbstractEffectm optional, defalut=None
|
The default effect to be used when no effect is specified for a variable. |
None
|
default_exogenous_prior |
tuple
|
Default prior distribution for exogenous effects. |
None
|
rng_key |
jax.random.PRNGKey or None (default
|
Random number generator key. |
None
|
Source code in src/prophetverse/sktime/univariate.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
model
property
Return the model function.
Returns:
Type | Description |
---|---|
Callable
|
A function that can be passed to Numpyro samplers. |
__init__(trend='linear', changepoint_interval=25, changepoint_range=0.8, changepoint_prior_scale=0.001, offset_prior_scale=0.1, capacity_prior_scale=0.2, capacity_prior_loc=1.1, exogenous_effects=None, default_effect=None, feature_transformer=None, noise_scale=0.05, mcmc_samples=2000, mcmc_warmup=200, mcmc_chains=4, inference_method='map', optimizer_name='Adam', optimizer_kwargs=None, optimizer_steps=100000, likelihood='normal', scale=None, rng_key=None)
Initialize the Prophet model.
Source code in src/prophetverse/sktime/univariate.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
get_test_params(parameter_set='default')
classmethod
Params to be used in sktime unit tests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameter_set |
str
|
The parameter set to be used (ignored in this implementation) |
'default'
|
Returns:
Type | Description |
---|---|
List[dict[str, int]]
|
A list of dictionaries containing the test parameters. |
Source code in src/prophetverse/sktime/univariate.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|