Skip to content

ProphetGamma

Bases: Prophetverse

Gamma-likelihood prophet.

Parameters:

Name Type Description Default
changepoint_interval int

Number of potential changepoints to sample in the history.

25
changepoint_range float or int

Proportion of the history in which trend changepoints will be estimated.

  • if float, must be between 0 and 1. The range will be that proportion of the training history.

  • if int, ca nbe positive or negative. Absolute value must be less than number of training points. The range will be that number of points. A negative int indicates number of points counting from the end of the history, a positive int from the beginning.

0.8
changepoint_prior_scale float

Regularization parameter controlling the flexibility of the automatic changepoint selection.

0.001
offset_prior_scale float

Scale parameter for the prior distribution of the offset. The offset is the constant term in the piecewise trend equation.

0.1
feature_transformer sktime transformer, BaseTransformer

Transformer object to generate Fourier terms, holiday or other features. If None, no additional features are used. For multiple features, pass a FeatureUnion object with the transformers.

None
capacity_prior_scale float

Scale parameter for the prior distribution of the capacity.

0.2
capacity_prior_loc float

Location parameter for the prior distribution of the capacity.

1.1
noise_scale float

Scale parameter for the observation noise.

0.05
trend str, optional, one of "linear" (default) or "logistic"

Type of trend to use. Can be "linear" or "logistic".

'logistic'
mcmc_samples int

Number of MCMC samples to draw.

2000
mcmc_warmup int

Number of MCMC warmup steps. Also known as burn-in.

200
mcmc_chains int

Number of MCMC chains to run in parallel.

4
inference_method str, optional, one of "mcmc" or "map"

Inference method to use. Can be "mcmc" or "map".

"map"
optimizer_name str

Name of the numpyro optimizer to use for variational inference.

"Adam"
optimizer_kwargs dict

Additional keyword arguments to pass to the numpyro optimizer.

{}
optimizer_steps int

Number of optimization steps to perform for variational inference.

100_000
exogenous_effects List[AbstractEffect]

A list of prophetverse AbstractEffect objects defining the exogenous effects to be used in the model.

None
default_effect AbstractEffectm optional, defalut=None

The default effect to be used when no effect is specified for a variable.

None
default_exogenous_prior tuple

Default prior distribution for exogenous effects.

None
rng_key jax.random.PRNGKey or None (default

Random number generator key.

None
Source code in src/prophetverse/sktime/univariate.py
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
class ProphetGamma(Prophetverse):
    """Gamma-likelihood prophet.

    Parameters
    ----------
    changepoint_interval : int, optional, default=25
        Number of potential changepoints to sample in the history.

    changepoint_range : float or int, optional, default=0.8
        Proportion of the history in which trend changepoints will be estimated.

        * if float, must be between 0 and 1.
          The range will be that proportion of the training history.

        * if int, ca nbe positive or negative.
          Absolute value must be less than number of training points.
          The range will be that number of points.
          A negative int indicates number of points
          counting from the end of the history, a positive int from the beginning.

    changepoint_prior_scale : float, optional, default=0.001
        Regularization parameter controlling the flexibility
        of the automatic changepoint selection.

    offset_prior_scale : float, optional, default=0.1
        Scale parameter for the prior distribution of the offset.
        The offset is the constant term in the piecewise trend equation.

    feature_transformer : sktime transformer, BaseTransformer, optional, default=None
        Transformer object to generate Fourier terms, holiday or other features.
        If None, no additional features are used.
        For multiple features, pass a ``FeatureUnion`` object with the transformers.

    capacity_prior_scale : float, optional, default=0.2
        Scale parameter for the prior distribution of the capacity.

    capacity_prior_loc : float, optional, default=1.1
        Location parameter for the prior distribution of the capacity.

    noise_scale : float, optional, default=0.05
        Scale parameter for the observation noise.
    trend : str, optional, one of "linear" (default) or "logistic"
        Type of trend to use. Can be "linear" or "logistic".

    mcmc_samples : int, optional, default=2000
        Number of MCMC samples to draw.

    mcmc_warmup : int, optional, default=200
        Number of MCMC warmup steps. Also known as burn-in.

    mcmc_chains : int, optional, default=4
        Number of MCMC chains to run in parallel.

    inference_method : str, optional, one of "mcmc" or "map", default="map"
        Inference method to use. Can be "mcmc" or "map".

    optimizer_name : str, optional, default="Adam"
        Name of the numpyro optimizer to use for variational inference.

    optimizer_kwargs : dict, optional, default={}
        Additional keyword arguments to pass to the numpyro optimizer.

    optimizer_steps : int, optional, default=100_000
        Number of optimization steps to perform for variational inference.

    exogenous_effects : List[AbstractEffect], optional, default=None
        A list of ``prophetverse`` ``AbstractEffect`` objects
        defining the exogenous effects to be used in the model.

    default_effect : AbstractEffectm optional, defalut=None
        The default effect to be used when no effect is specified for a variable.

    default_exogenous_prior : tuple, default=None
        Default prior distribution for exogenous effects.

    rng_key : jax.random.PRNGKey or None (default
        Random number generator key.
    """

    def __init__(
        self,
        changepoint_interval=25,
        changepoint_range=0.8,
        changepoint_prior_scale=0.001,
        offset_prior_scale=0.1,
        feature_transformer=None,
        capacity_prior_scale=0.2,
        capacity_prior_loc=1.1,
        noise_scale=0.05,
        trend="logistic",
        mcmc_samples=2000,
        mcmc_warmup=200,
        mcmc_chains=4,
        inference_method="map",
        optimizer_name="Adam",
        optimizer_kwargs=None,
        optimizer_steps=100_000,
        exogenous_effects=None,
        default_effect=None,
        scale=None,
        rng_key=None,
    ):

        super().__init__(
            changepoint_interval=changepoint_interval,
            changepoint_range=changepoint_range,
            changepoint_prior_scale=changepoint_prior_scale,
            offset_prior_scale=offset_prior_scale,
            feature_transformer=feature_transformer,
            capacity_prior_scale=capacity_prior_scale,
            capacity_prior_loc=capacity_prior_loc,
            noise_scale=noise_scale,
            trend=trend,
            mcmc_samples=mcmc_samples,
            mcmc_warmup=mcmc_warmup,
            mcmc_chains=mcmc_chains,
            inference_method=inference_method,
            optimizer_name=optimizer_name,
            optimizer_kwargs=optimizer_kwargs,
            optimizer_steps=optimizer_steps,
            exogenous_effects=exogenous_effects,
            likelihood="gamma",
            default_effect=default_effect,
            scale=scale,
            rng_key=rng_key,
        )