HierarchicalProphet
Contains the implementation of the HierarchicalProphet forecaster.
HierarchicalProphet
Bases: BaseProphetForecaster
A Bayesian hierarchical time series forecasting model based on the Prophet.
This class forecasts all series in a hierarchy at once, using a MultivariateNormal as the likelihood function and LKJ priors for the correlation matrix.
This class may be interesting if you want to fit shared coefficients across series.
By default, all coefficients are obtained exclusively for each series, but this can
be changed through the shared_coefficients
parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trend |
Union[str, BaseEffect], optional, one of "linear" (default) or "logistic"
|
Type of trend to use. Can also be a custom effect object. |
'linear'
|
changepoint_interval |
int
|
Number of potential changepoints to sample in the history. |
25
|
changepoint_range |
float or int
|
Proportion of the history in which trend changepoints will be estimated.
|
0.8
|
changepoint_prior_scale |
float
|
Regularization parameter controlling the flexibility of the automatic changepoint selection. |
0.001
|
offset_prior_scale |
float
|
Scale parameter for the prior distribution of the offset. The offset is the constant term in the piecewise trend equation. |
0.1
|
capacity_prior_scale |
float
|
Scale parameter for the prior distribution of the capacity. |
0.2
|
capacity_prior_loc |
float
|
Location parameter for the prior distribution of the capacity. |
1.1
|
feature_transformer |
BaseTransformer or None
|
A transformer to preprocess the exogenous features. |
None
|
exogenous_effects |
list of AbstractEffect
|
A list defining the exogenous effects to be used in the model. |
None
|
default_effect |
AbstractEffect
|
The default effect to be used when no effect is specified for a variable. |
None
|
shared_features |
list
|
List of shared features across series. |
[]
|
mcmc_samples |
int
|
Number of MCMC samples to draw. |
2000
|
mcmc_warmup |
int
|
Number of warmup steps for MCMC. |
200
|
mcmc_chains |
int
|
Number of MCMC chains. |
4
|
inference_method |
str
|
Inference method to use. Either "map" or "mcmc". |
'map'
|
optimizer_name |
str
|
Name of the optimizer to use. |
'Adam'
|
optimizer_kwargs |
dict
|
Additional keyword arguments for the optimizer. |
{'step_size': 1e-4}
|
optimizer_steps |
int
|
Number of optimization steps. |
100_000
|
noise_scale |
float
|
Scale parameter for the noise. |
0.05
|
correlation_matrix_concentration |
float
|
Concentration parameter for the correlation matrix. |
1.0
|
rng_key |
PRNGKey
|
Random number generator key. |
None
|
Source code in src/prophetverse/sktime/multivariate.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
|
n_series
property
Get the number of series.
Returns:
Type | Description |
---|---|
int
|
Number of series. |
get_test_params(parameter_set='default')
classmethod
Params to be used in sktime unit tests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameter_set |
str
|
The parameter set to be used (ignored in this implementation) |
'default'
|
Returns:
Type | Description |
---|---|
List[dict[str, int]]
|
A list of dictionaries containing the test parameters. |
Source code in src/prophetverse/sktime/multivariate.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
|
predict_samples(fh, X=None)
Generate samples for the given exogenous variables and forecasting horizon.
Returns:
Type | Description |
---|---|
ndarray
|
Predicted samples. |
Source code in src/prophetverse/sktime/multivariate.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|