Univariate Prophet
Bases: BaseProphetForecaster
Univariate Prophetverse forecaster with multiple likelihood options.
This forecaster implements a univariate model with support for different likelihoods. It differs from Facebook's Prophet in several ways: - Logistic trend is parametrized differently, inferring capacity from data. - Arbitrary sktime transformers can be used (e.g., FourierFeatures or HolidayFeatures). - No default weekly or yearly seasonality; these must be provided via the feature_transformer. - Uses 'changepoint_interval' instead of 'n_changepoints' for selecting changepoints. - Allows for configuring distinct functions for each exogenous variable effect.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trend
|
Union[str, BaseEffect]
|
Type of trend to use. Either "linear" (default) or "logistic", or a custom effect object. |
'linear'
|
exogenous_effects
|
Optional[List[BaseEffect]]
|
List of effect objects defining the exogenous effects. |
None
|
default_effect
|
Optional[BaseEffect]
|
The default effect for variables without a specified effect. |
None
|
feature_transformer
|
sktime transformer
|
Transformer object to generate additional features (e.g., Fourier terms). |
None
|
noise_scale
|
float
|
Scale parameter for the observation noise. Must be greater than 0. (default: 0.05) |
0.05
|
likelihood
|
str
|
The likelihood model to use. One of "normal", "gamma", or "negbinomial". (default: "normal") |
'normal'
|
scale
|
optional
|
Scaling value inferred from the data. |
None
|
rng_key
|
optional
|
A jax.random.PRNGKey instance, or None. |
None
|
inference_engine
|
optional
|
An inference engine for running the model. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If noise_scale is not greater than 0 or an unsupported likelihood is provided. |
Source code in src/prophetverse/sktime/univariate.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
model
property
Return the appropriate model function based on the likelihood.
Returns:
Type | Description |
---|---|
Callable
|
The model function to be used with Numpyro samplers. |
__init__(trend='linear', exogenous_effects=None, default_effect=None, feature_transformer=None, noise_scale=0.05, likelihood='normal', scale=None, rng_key=None, inference_engine=None)
Initialize the Prophetverse model.
Source code in src/prophetverse/sktime/univariate.py
get_test_params(parameter_set='default')
classmethod
Return parameters to be used in sktime unit tests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameter_set
|
str
|
The parameter set name (currently ignored). |
'default'
|
Returns:
Type | Description |
---|---|
List[dict[str, int]]
|
A list of dictionaries containing test parameters. |