Univariate Prophet
Bases: Prophetverse
Univariate Prophetverse
forecaster - prophet model implemented in numpyro.
Differences to facebook's prophet:
-
logistic trend. Here, another parametrization is considered, and the capacity is not passed as input, but inferred from the data.
-
the users can pass arbitrary
sktime
transformers asfeature_transformer
, for instanceFourierFeatures
orHolidayFeatures
. -
no default weekly_seasonality/yearly_seasonality, this is left to the user via the
feature_transformer
parameter -
Uses
changepoint_interval
instead ofn_changepoints
to set changepoints. -
accepts configurations where each exogenous variable has a different function relating it to its additive effect on the time series. One can, for example, set different priors for a group of feature, or use a Hill function to model the effect of a feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
changepoint_interval |
int
|
Number of potential changepoints to sample in the history. |
25
|
changepoint_range |
float or int
|
Proportion of the history in which trend changepoints will be estimated.
|
0.8
|
changepoint_prior_scale |
float
|
Regularization parameter controlling the flexibility of the automatic changepoint selection. |
0.001
|
offset_prior_scale |
float
|
Scale parameter for the prior distribution of the offset. The offset is the constant term in the piecewise trend equation. |
0.1
|
feature_transformer |
sktime transformer, BaseTransformer
|
Transformer object to generate Fourier terms, holiday or other features.
If None, no additional features are used.
For multiple features, pass a |
None
|
capacity_prior_scale |
float
|
Scale parameter for the prior distribution of the capacity. |
0.2
|
capacity_prior_loc |
float
|
Location parameter for the prior distribution of the capacity. |
1.1
|
noise_scale |
float
|
Scale parameter for the observation noise. |
0.05
|
trend |
str, optional, one of "linear" (default) or "logistic"
|
Type of trend to use. Can be "linear" or "logistic". |
'logistic'
|
mcmc_samples |
int
|
Number of MCMC samples to draw. |
2000
|
mcmc_warmup |
int
|
Number of MCMC warmup steps. Also known as burn-in. |
200
|
mcmc_chains |
int
|
Number of MCMC chains to run in parallel. |
4
|
inference_method |
str, optional, one of "mcmc" or "map"
|
Inference method to use. Can be "mcmc" or "map". |
"map"
|
optimizer_name |
str
|
Name of the numpyro optimizer to use for variational inference. |
"Adam"
|
optimizer_kwargs |
dict
|
Additional keyword arguments to pass to the numpyro optimizer. |
{}
|
optimizer_steps |
int
|
Number of optimization steps to perform for variational inference. |
100_000
|
exogenous_effects |
List[AbstractEffect]
|
A list of |
None
|
default_effect |
AbstractEffectm optional, defalut=None
|
The default effect to be used when no effect is specified for a variable. |
None
|
default_exogenous_prior |
tuple
|
Default prior distribution for exogenous effects. |
None
|
rng_key |
jax.random.PRNGKey or None (default
|
Random number generator key. |
None
|
Examples:
>>> from sktime.datasets import load_airline
>>> from sktime.forecasting.prophetverse import Prophetverse
>>> from prophetverse.effects.fourier import LinearFourierSeasonality
>>> from prophetverse.utils.regex import no_input_columns
>>> y = load_airline()
>>> model = Prophetverse(
... exogenous_effects=[
... (
... "seasonality",
... LinearFourierSeasonality(
... sp_list=[12],
... fourier_terms_list=[3],
... freq="M",
... effect_mode="multiplicative",
... ),
... no_input_columns,
... )
... ],
... )
>>> model.fit(y)
>>> model.predict(fh=[1, 2, 3])
Source code in src/prophetverse/sktime/univariate.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
|