Skip to content

HierarchicalProphet

Contains the implementation of the HierarchicalProphet forecaster.

HierarchicalProphet

Bases: BaseProphetForecaster

A Bayesian hierarchical time series forecasting model based on Meta's Prophet.

This method forecasts all bottom series in a hierarchy at once, using a MultivariateNormal as the likelihood function and LKJ priors for the correlation matrix.

This forecaster is particularly interesting if you want to fit shared coefficients across series. In that case, shared_features parameter should be a list of feature names that should have that behaviour.

Parameters:

Name Type Description Default
trend Union[str, BaseEffect]

Type of trend to use. Can also be a custom effect object.

"linear"
changepoint_interval int

Number of potential changepoints to sample in the history.

25
changepoint_range Union[float, int]

Proportion of the history in which trend changepoints will be estimated.

  • If float, must be between 0 and 1 (inclusive). The range will be that proportion of the training history.

  • If int, can be positive or negative. Absolute value must be less than the number of training points. The range will be that number of points. A negative int indicates the number of points counting from the end of the history, a positive int from the beginning.

0.8
changepoint_prior_scale float

Regularization parameter controlling the flexibility of the automatic changepoint selection.

0.001
offset_prior_scale float

Scale parameter for the prior distribution of the offset. The offset is the constant term in the piecewise trend equation.

0.1
capacity_prior_scale float

Scale parameter for the prior distribution of the capacity.

0.2
capacity_prior_loc float

Location parameter for the prior distribution of the capacity.

1.1
feature_transformer BaseTransformer or None

A transformer to preprocess the exogenous features.

None
exogenous_effects list of AbstractEffect or None

A list defining the exogenous effects to be used in the model.

None
default_effect AbstractEffect or None

The default effect to be used when no effect is specified for a variable.

None
shared_features list

List of features shared across all series in the hierarchy.

[]
mcmc_samples int

Number of MCMC samples to draw.

2000
mcmc_warmup int

Number of warmup steps for MCMC.

200
mcmc_chains int

Number of MCMC chains.

4
inference_method str

Inference method to use. Either "map" or "mcmc".

'map'
optimizer_name str

Name of the optimizer to use.

'Adam'
optimizer_kwargs dict or None

Additional keyword arguments for the optimizer.

{'step_size': 1e-4}
optimizer_steps int

Number of optimization steps.

100_000
noise_scale float

Scale parameter for the noise.

0.05
correlation_matrix_concentration float

Concentration parameter for the correlation matrix.

1.0
rng_key PRNGKey or None

Random number generator key.

None

Examples:

>>> from sktime.forecasting.naive import NaiveForecaster
>>> from sktime.transformations.hierarchical.aggregate import Aggregator
>>> from sktime.utils._testing.hierarchical import _bottom_hier_datagen
>>> from prophetverse.sktime.multivariate import HierarchicalProphet
>>> agg = Aggregator()
>>> y = _bottom_hier_datagen(
...     no_bottom_nodes=3,
...     no_levels=1,
...     random_seed=123,
...     length=7,
... )
>>> y = agg.fit_transform(y)
>>> forecaster = HierarchicalProphet()
>>> forecaster.fit(y)
>>> forecaster.predict(fh=[1])
Source code in src/prophetverse/sktime/multivariate.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
class HierarchicalProphet(BaseProphetForecaster):
    """A Bayesian hierarchical time series forecasting model based on Meta's Prophet.

    This method forecasts all bottom series in a hierarchy at once, using a
    MultivariateNormal as the likelihood function and LKJ priors for the correlation
    matrix.

    This forecaster is particularly interesting if you want to fit shared coefficients
    across series. In that case, `shared_features` parameter should be a list of
    feature names that should have that behaviour.

    Parameters
    ----------
    trend : Union[str, BaseEffect], optional, default="linear"
        Type of trend to use. Can also be a custom effect object.

    changepoint_interval : int, optional, default=25
        Number of potential changepoints to sample in the history.

    changepoint_range : Union[float, int], optional, default=0.8
        Proportion of the history in which trend changepoints will be estimated.

        * If float, must be between 0 and 1 (inclusive).
          The range will be that proportion of the training history.

        * If int, can be positive or negative.
          Absolute value must be less than the number of training points.
          The range will be that number of points.
          A negative int indicates the number of points
          counting from the end of the history, a positive int from the beginning.

    changepoint_prior_scale : float, optional, default=0.001
        Regularization parameter controlling the flexibility
        of the automatic changepoint selection.

    offset_prior_scale : float, optional, default=0.1
        Scale parameter for the prior distribution of the offset.
        The offset is the constant term in the piecewise trend equation.

    capacity_prior_scale : float, optional, default=0.2
        Scale parameter for the prior distribution of the capacity.

    capacity_prior_loc : float, optional, default=1.1
        Location parameter for the prior distribution of the capacity.

    feature_transformer : BaseTransformer or None, optional, default=None
        A transformer to preprocess the exogenous features.

    exogenous_effects : list of AbstractEffect or None, optional, default=None
        A list defining the exogenous effects to be used in the model.

    default_effect : AbstractEffect or None, optional, default=None
        The default effect to be used when no effect is specified for a variable.

    shared_features : list, optional, default=[]
        List of features shared across all series in the hierarchy.

    mcmc_samples : int, optional, default=2000
        Number of MCMC samples to draw.

    mcmc_warmup : int, optional, default=200
        Number of warmup steps for MCMC.

    mcmc_chains : int, optional, default=4
        Number of MCMC chains.

    inference_method : str, optional, default='map'
        Inference method to use. Either "map" or "mcmc".

    optimizer_name : str, optional, default='Adam'
        Name of the optimizer to use.

    optimizer_kwargs : dict or None, optional, default={'step_size': 1e-4}
        Additional keyword arguments for the optimizer.

    optimizer_steps : int, optional, default=100_000
        Number of optimization steps.

    noise_scale : float, optional, default=0.05
        Scale parameter for the noise.

    correlation_matrix_concentration : float, optional, default=1.0
        Concentration parameter for the correlation matrix.

    rng_key : jax.random.PRNGKey or None, optional, default=None
        Random number generator key.

    Examples
    --------
    >>> from sktime.forecasting.naive import NaiveForecaster
    >>> from sktime.transformations.hierarchical.aggregate import Aggregator
    >>> from sktime.utils._testing.hierarchical import _bottom_hier_datagen
    >>> from prophetverse.sktime.multivariate import HierarchicalProphet
    >>> agg = Aggregator()
    >>> y = _bottom_hier_datagen(
    ...     no_bottom_nodes=3,
    ...     no_levels=1,
    ...     random_seed=123,
    ...     length=7,
    ... )
    >>> y = agg.fit_transform(y)
    >>> forecaster = HierarchicalProphet()
    >>> forecaster.fit(y)
    >>> forecaster.predict(fh=[1])
    """

    _tags = {
        # packaging info
        # --------------
        "authors": "felipeangelimvieira",
        "maintainers": "felipeangelimvieira",
        "python_dependencies": "prophetverse",
        # estimator type
        "scitype:y": "univariate",
        "ignores-exogeneous-X": False,
        "handles-missing-data": False,
        "y_inner_mtype": [
            "pd.DataFrame",
            "pd-multiindex",
            "pd_multiindex_hier",
        ],
        "X_inner_mtype": [
            "pd.DataFrame",
            "pd-multiindex",
            "pd_multiindex_hier",
        ],  # which types do _fit, _predict, assume for X?
        "requires-fh-in-fit": False,
        "X-y-must-have-same-index": False,
        "fit_is_empty": False,
        "capability:pred_int": True,
        "capability:pred_int:insample": True,
    }

    def __init__(
        self,
        trend: Union[BaseEffect, str] = "linear",
        changepoint_interval: int = 25,
        changepoint_range: Union[float, int] = 0.8,
        changepoint_prior_scale: float = 0.001,
        offset_prior_scale: float = 0.1,
        capacity_prior_scale=0.2,
        capacity_prior_loc=1.1,
        feature_transformer: BaseTransformer = None,
        exogenous_effects=None,
        default_effect=None,
        shared_features=None,
        mcmc_samples=2000,
        mcmc_warmup=200,
        mcmc_chains=4,
        inference_method="map",
        optimizer_name="Adam",
        optimizer_kwargs=None,
        optimizer_steps=100_000,
        noise_scale=0.05,
        correlation_matrix_concentration=1.0,
        rng_key=None,
        inference_engine=None,
    ):

        self.noise_scale = noise_scale
        self.shared_features = shared_features
        self.feature_transformer = feature_transformer
        self.correlation_matrix_concentration = correlation_matrix_concentration

        super().__init__(
            # Trend
            trend=trend,
            changepoint_interval=changepoint_interval,
            changepoint_range=changepoint_range,
            changepoint_prior_scale=changepoint_prior_scale,
            offset_prior_scale=offset_prior_scale,
            capacity_prior_scale=capacity_prior_scale,
            capacity_prior_loc=capacity_prior_loc,
            # Exog effects
            default_effect=default_effect,
            exogenous_effects=exogenous_effects,
            # Base Bayesian forecaster
            rng_key=rng_key,
            inference_engine=inference_engine,
            inference_method=inference_method,
            optimizer_name=optimizer_name,
            optimizer_kwargs=optimizer_kwargs,
            optimizer_steps=optimizer_steps,
            mcmc_samples=mcmc_samples,
            mcmc_warmup=mcmc_warmup,
            mcmc_chains=mcmc_chains,
        )

        self.model = multivariate_model  # type: ignore[method-assign]
        self._validate_hyperparams()

    def _validate_hyperparams(self):
        """Validate the hyperparameters of the HierarchicalProphet forecaster."""
        super()._validate_hyperparams()

        if self.noise_scale <= 0:
            raise ValueError("noise_scale must be greater than 0.")
        if self.correlation_matrix_concentration <= 0:
            raise ValueError("correlation_matrix_concentration must be greater than 0.")

    def _get_fit_data(self, y, X, fh):
        """
        Prepare the data for the NumPyro model.

        Parameters
        ----------
        y: pd.DataFrame
            Training target time series.
        X: pd.DataFrame
            Training exogenous variables.
        fh: ForecastingHorizon
            Forecasting horizon.

        Returns
        -------
        dict
            A dictionary containing the model data.
        """
        # Handling series without __total indexes
        self.aggregator_ = Aggregator()
        self.original_y_indexes_ = y.index
        fh = y.index.get_level_values(-1).unique()
        y = self.aggregator_.fit_transform(y)

        # Updating internal _y of sktime because BaseBayesianForecaster
        # uses it to convert
        # Forecast Horizon into multiindex correcly
        self.internal_y_indexes_ = y.index

        # Convert inputs to array, including the time index
        y_bottom = loc_bottom_series(y)
        y_bottom_arrays = series_to_tensor(y_bottom)

        # If no exogenous variables, create empty DataFrame
        # Else, aggregate exogenous variables and transform them
        if X is None or X.columns.empty:
            X = pd.DataFrame(index=y.index)

        X_bottom = loc_bottom_series(X)

        if self.feature_transformer is not None:
            X_bottom = self.feature_transformer.fit_transform(X_bottom)

        self._has_exogenous_variables = (
            X_bottom is not None and not X_bottom.columns.empty
        )

        if self._has_exogenous_variables:
            shared_features = self.shared_features
            if shared_features is None:
                shared_features = []

            self.expand_columns_transformer_ = ExpandColumnPerLevel(
                X_bottom.columns.difference(shared_features).to_list()
            ).fit(X_bottom)
            X_bottom = self.expand_columns_transformer_.transform(X_bottom)

        else:
            self._exogenous_effects_and_columns = {}
            exogenous_data = {}

        # Trend model
        self.trend_model_ = self._get_trend_model()
        self.trend_model_.fit(X=X_bottom, y=y_bottom, scale=self._scale)
        trend_data = self.trend_model_.transform(X=X_bottom, fh=fh)

        self._fit_effects(X_bottom, y_bottom)
        exogenous_data = self._transform_effects(X_bottom, fh=fh)

        self.fit_and_predict_data_ = {
            "trend_model": self.trend_model_,
            "exogenous_effects": self.non_skipped_exogenous_effect,
            "correlation_matrix_concentration": self.correlation_matrix_concentration,
            "noise_scale": self.noise_scale,
            "is_single_series": self.n_series == 1,
        }

        return dict(
            y=y_bottom_arrays,
            data=exogenous_data,
            trend_data=trend_data,
            **self.fit_and_predict_data_,
        )

    def _get_predict_data(self, X: pd.DataFrame, fh: ForecastingHorizon) -> np.ndarray:
        """Generate samples for the given exogenous variables and forecasting horizon.

        Parameters
        ----------
        X: pd.DataFrame
            Exogenous variables.
        fh: ForecastingHorizon
            Forecasting horizon.

        Returns
        -------
        np.ndarray
            Predicted samples.
        """
        fh_dates = self.fh_to_index(fh)
        fh_as_index = pd.Index(list(fh_dates.to_numpy()))

        if not isinstance(fh, ForecastingHorizon):
            fh = self._check_fh(fh)

        if X is None or X.shape[1] == 0:
            idx = reindex_time_series(self._y, fh_as_index).index
            X = pd.DataFrame(index=idx)
            X = self.aggregator_.transform(X)

        X_bottom = loc_bottom_series(X)

        if self._has_exogenous_variables:

            assert fh_as_index.isin(
                X_bottom.index.get_level_values(-1)
            ).all(), "Missing exogenous variables for some series or dates."
            if self.feature_transformer is not None:
                X_bottom = self.feature_transformer.transform(X_bottom)
            X_bottom = self.expand_columns_transformer_.transform(X_bottom)

        trend_data = self.trend_model_.transform(X=X_bottom, fh=fh_as_index)
        exogenous_data = self._transform_effects(X=X_bottom, fh=fh_as_index)

        return dict(
            y=None,
            data=exogenous_data,
            trend_data=trend_data,
            **self.fit_and_predict_data_,
        )

    def predict_samples(
        self, fh: ForecastingHorizon, X: Optional[pd.DataFrame] = None
    ) -> np.ndarray:
        """Generate samples for the given exogenous variables and forecasting horizon.

        Parameters
        ----------
            X (pd.DataFrame): Exogenous variables.
            fh (ForecastingHorizon): Forecasting horizon.

        Returns
        -------
        np.ndarray
            Predicted samples.
        """
        samples = super().predict_samples(X=X, fh=fh)

        return self.aggregator_.transform(samples)

    def _filter_series_tuples(self, levels: List[Tuple]) -> List[Tuple]:
        """Filter series tuples, returning only series of interest.

        Since this class performs a bottom-up aggregation, we are only interested in the
        bottom levels of the hierarchy. This method filters the series tuples, returning
        only the bottom levels.

        Parameters
        ----------
        levels : List[Tuple]
            The original levels of timeseries (`y.index.droplevel(-1).unique()`)

        Returns
        -------
        List[Tuple]
            The same object as `levels`, but with only the bottom levels.
        """
        # Make it a tuple for consistency
        if not isinstance(levels[0], (tuple, list)):
            levels = [(idx,) for idx in levels]

        bottom_levels = [idx for idx in levels if idx[-1] != "__total"]
        return bottom_levels

    @property
    def n_series(self):
        """Get the number of series.

        Returns
        -------
        int
            Number of series.
        """
        if self.internal_y_indexes_.nlevels == 1:
            return 1
        return len(
            self._filter_series_tuples(
                self.internal_y_indexes_.droplevel(-1).unique().tolist()
            )
        )

    def _postprocess_output(self, y: pd.DataFrame) -> pd.DataFrame:
        """Postprocess outputs, by aggregating them.

        Parameters
        ----------
        y : pd.DataFrame
            dataframe with output predictions

        Returns
        -------
        pd.DataFrame
            postprocessed dataframe

        """
        return self.aggregator_.transform(y)

    @classmethod
    def get_test_params(cls, parameter_set="default") -> List[dict[str, Any]]:
        """Params to be used in sktime unit tests.

        Parameters
        ----------
        parameter_set : str, optional
            The parameter set to be used (ignored in this implementation)

        Returns
        -------
        List[dict[str, int]]
            A list of dictionaries containing the test parameters.
        """
        return [
            {
                "optimizer_steps": 1,
                "inference_method": "map",
            },
            {
                "inference_method": "mcmc",
                "mcmc_samples": 1,
                "mcmc_warmup": 1,
                "mcmc_chains": 1,
            },
        ]

n_series property

Get the number of series.

Returns:

Type Description
int

Number of series.

get_test_params(parameter_set='default') classmethod

Params to be used in sktime unit tests.

Parameters:

Name Type Description Default
parameter_set str

The parameter set to be used (ignored in this implementation)

'default'

Returns:

Type Description
List[dict[str, int]]

A list of dictionaries containing the test parameters.

Source code in src/prophetverse/sktime/multivariate.py
@classmethod
def get_test_params(cls, parameter_set="default") -> List[dict[str, Any]]:
    """Params to be used in sktime unit tests.

    Parameters
    ----------
    parameter_set : str, optional
        The parameter set to be used (ignored in this implementation)

    Returns
    -------
    List[dict[str, int]]
        A list of dictionaries containing the test parameters.
    """
    return [
        {
            "optimizer_steps": 1,
            "inference_method": "map",
        },
        {
            "inference_method": "mcmc",
            "mcmc_samples": 1,
            "mcmc_warmup": 1,
            "mcmc_chains": 1,
        },
    ]

predict_samples(fh, X=None)

Generate samples for the given exogenous variables and forecasting horizon.

Returns:

Type Description
ndarray

Predicted samples.

Source code in src/prophetverse/sktime/multivariate.py
def predict_samples(
    self, fh: ForecastingHorizon, X: Optional[pd.DataFrame] = None
) -> np.ndarray:
    """Generate samples for the given exogenous variables and forecasting horizon.

    Parameters
    ----------
        X (pd.DataFrame): Exogenous variables.
        fh (ForecastingHorizon): Forecasting horizon.

    Returns
    -------
    np.ndarray
        Predicted samples.
    """
    samples = super().predict_samples(X=X, fh=fh)

    return self.aggregator_.transform(samples)