Inference Engine
Module for the inference engines.
BaseInferenceEngine
Bases: BaseObject
Class representing an inference engine for a given model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Callable
|
The model to be used for inference. |
required |
rng_key |
Optional[PRNGKey]
|
The random number generator key. If not provided, a default key with value 0 will be used. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
model |
Callable
|
The model used for inference. |
rng_key |
PRNGKey
|
The random number generator key. |
Source code in src/prophetverse/engine/base.py
infer(model, **kwargs)
Perform inference using the specified model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Additional keyword arguments to be passed to the model. |
{}
|
Returns:
Type | Description |
---|---|
The result of the inference.
|
|
Source code in src/prophetverse/engine/base.py
predict(**kwargs)
Generate predictions using the specified model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Additional keyword arguments to be passed to the model. |
{}
|
Returns:
Type | Description |
---|---|
The predictions generated by the model.
|
|
Source code in src/prophetverse/engine/base.py
MAPInferenceEngine
Bases: BaseInferenceEngine
Maximum a Posteriori (MAP) Inference Engine.
This class performs MAP inference using Stochastic Variational Inference (SVI) with AutoDelta guide. It provides methods for inference and prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Callable
|
The probabilistic model to perform inference on. |
required |
optimizer_factory |
_NumPyroOptim
|
The optimizer to use for SVI. Defaults to None. |
None
|
num_steps |
int
|
The number of optimization steps to perform. Defaults to 10000. |
10000
|
rng_key |
PRNGKey
|
The random number generator key. Defaults to None. |
None
|
Source code in src/prophetverse/engine/map.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
get_test_params(*args, **kwargs)
classmethod
Return test params for unit testing.
Source code in src/prophetverse/engine/map.py
raise_error_if_nan_loss(run_results)
Raise an error if the loss is NaN.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_results |
SVIRunResult
|
The result of the SVI run. |
required |
Raises:
Type | Description |
---|---|
MAPInferenceEngineError
|
If the last loss is NaN. |
Source code in src/prophetverse/engine/map.py
MAPInferenceEngineError
Bases: Exception
Exception raised for NaN losses in MAPInferenceEngine.
Source code in src/prophetverse/engine/map.py
MCMCInferenceEngine
Bases: BaseInferenceEngine
Perform MCMC (Markov Chain Monte Carlo) inference for a given model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Callable
|
The model function to perform inference on. |
required |
num_samples |
int
|
The number of MCMC samples to draw. |
1000
|
num_warmup |
int
|
The number of warmup samples to discard. |
200
|
num_chains |
int
|
The number of MCMC chains to run in parallel. |
1
|
dense_mass |
bool
|
Whether to use dense mass matrix for NUTS sampler. |
False
|
rng_key |
Optional
|
The random number generator key. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
num_samples |
int
|
The number of MCMC samples to draw. |
num_warmup |
int
|
The number of warmup samples to discard. |
num_chains |
int
|
The number of MCMC chains to run in parallel. |
dense_mass |
bool
|
Whether to use dense mass matrix for NUTS sampler. |
mcmc_ |
MCMC
|
The MCMC object used for inference. |
posterior_samples_ |
Dict[str, ndarray]
|
The posterior samples obtained from MCMC. |
samples_predictive_ |
Dict[str, ndarray]
|
The predictive samples obtained from MCMC. |
samples_ |
Dict[str, ndarray]
|
The MCMC samples obtained from MCMC. |
Source code in src/prophetverse/engine/mcmc.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|