Skip to content

Builtin Exogenous Effects

Effects that define relationships between variables and the target.

BaseEffect

Bases: BaseObject

Base class for effects.

Effects are objects which are responsible for preparing the data and applying a specific effect to the forecast. During preparation of the data (which happens in transform method), the effect receives the exogenous variables dataframe and can use them to prepare the jax arrays that will be used at inference time. During inference time, the predict method is called, and it should output a new component to the additive model of Prophetverse.

Remember that Prophetverse's models are Generalized Additive Models, which are composed of many terms summed together to form the final forecast. Each term is represented by an effect.

Children classes should implement the following methods:

  • _fit (optional): This method is called during fit() of the forecasting and should be used to initialize any necessary parameters or data structures. It receives the exogenous variables dataframe X, the series y, and the scale factor scale that was used to scale the timeseries.

  • _transform (optional): This method receives the exogenous variables dataframe, and should return an object containing the data needed for the effect. This object will be passed to the predict method as data. By default the columns of the dataframe that match the regex pattern are selected, and the result is converted to a jnp.ndarray.

  • _predict (mandatory): This method receives the output of _transform and all previously computed effects. It should return the effect values as a jnp.ndarray

Parameters:

Name Type Description Default
id str

The id of the effect, by default "". Used to identify the effect in the model.

required
regex Optional[str]

A regex pattern to match the columns of the exogenous variables dataframe, by default None. If None, and _tags["skip_predict_if_no_match"] is True, the effect will be skipped if no columns are found.

required
effect_mode EFFECT_APPLICATION_TYPE

The mode of the effect, either "additive" or "multiplicative", by default "multiplicative". If "multiplicative", the effect multiplies the trend values before returning them.

required

Attributes:

Name Type Description
should_skip_predict bool

If True, the effect should be skipped during prediction. This is determined by the skip_predict_if_no_match tag and the presence of input feature columns names. If the tag is True and there are no input feature columns names, the effect should be skipped during prediction.

Source code in src/prophetverse/effects/base.py
class BaseEffect(BaseObject):
    """Base class for effects.

    Effects are objects which are responsible for preparing the data and applying
    a specific effect to the forecast. During preparation of the data (which happens in
    `transform` method), the effect receives the exogenous variables dataframe and can
    use them to prepare the jax arrays that will be used at inference time. During
    inference time, the `predict` method is called, and it should output a new component
    to the additive model of Prophetverse.

    Remember that Prophetverse's models are Generalized Additive Models, which are
    composed of many terms summed together to form the final forecast. Each term is
    represented by an effect.

    Children classes should implement the following methods:


    * `_fit` (optional): This method is called during fit() of the forecasting  and
    should be used to initialize any necessary parameters or data structures.
    It receives the exogenous variables dataframe X, the series `y`, and the scale
    factor `scale` that was used to scale the timeseries.

    * `_transform` (optional): This method receives the exogenous variables
    dataframe, and should return an object containing the data needed for the
    effect. This object will be passed to the predict method as `data`. By default
    the columns of the dataframe that match the regex pattern are selected, and the
    result is converted to a `jnp.ndarray`.

    * `_predict` (mandatory): This method receives the output of `_transform` and
    all previously computed effects. It should return the effect values as a
    `jnp.ndarray`


    Parameters
    ----------
    id : str, optional
        The id of the effect, by default "". Used to identify the effect in the model.
    regex : Optional[str], optional
        A regex pattern to match the columns of the exogenous variables dataframe,
        by default None. If None, and _tags["skip_predict_if_no_match"] is True, the
        effect will be skipped if no columns are found.
    effect_mode : EFFECT_APPLICATION_TYPE, optional
        The mode of the effect, either "additive" or "multiplicative", by default
        "multiplicative". If "multiplicative", the effect multiplies the trend values
        before returning them.


    Attributes
    ----------
    should_skip_predict : bool
        If True, the effect should be skipped during prediction. This is determined by
        the `skip_predict_if_no_match` tag and the presence of input feature columns
        names. If the tag is True and there are no input feature columns names, the
        effect should be skipped during prediction.
    """

    _tags = {
        "supports_multivariate": False,
        # If no columns are found, should
        # _predict be skipped?
        "skip_predict_if_no_match": True,
        # Should only the indexes related to the forecasting horizon be passed to
        # _transform?
        "filter_indexes_with_forecating_horizon_at_transform": True,
        # Is fit() required before calling transform()?
        "requires_fit_before_transform": False,
    }

    def __init__(self):
        self._is_fitted: bool = False

    def fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1.0):
        """Initialize the effect.

        This method is called during `fit()` of the forecasting model.
        It receives the Exogenous variables DataFrame and should be used to initialize
        any necessary parameters or data structures, such as detecting the columns that
        match the regex pattern.

        This method MUST set _input_feature_columns_names to a list of column names

        Parameters
        ----------
        y : pd.DataFrame
            The timeseries dataframe

        X : pd.DataFrame
            The DataFrame to initialize the effect.

        scale : float, optional
            The scale of the timeseries. For multivariate timeseries, this is
            a dataframe. For univariate, it is a simple float.

        Returns
        -------
        None

        Raises
        ------
        ValueError
            If the effect does not support multivariate data and the DataFrame has more
            than one level of index.
        """
        if not self.get_tag("supports_multivariate", False):
            if X is not None and X.index.nlevels > 1:
                raise ValueError(
                    f"The effect {self.__class__.__name__} does not "
                    + "support multivariate data"
                )

        self._fit(y=y, X=X, scale=scale)
        self._is_fitted = True

    def _fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1.0):
        """Customize the initialization of the effect.

        This method is called by the `fit()` method and can be overridden by
        subclasses to provide additional initialization logic.

        Parameters
        ----------
        y : pd.DataFrame
            The timeseries dataframe

        X : pd.DataFrame
            The DataFrame to initialize the effect.

        scale : float, optional
            The scale of the timeseries. For multivariate timeseries, this is
            a dataframe. For univariate, it is a simple float.
        """
        pass

    def transform(
        self,
        X: pd.DataFrame,
        fh: pd.Index,
    ) -> Any:
        """Prepare input data to be passed to numpyro model.

        This method receives the Exogenous variables DataFrame and should return a
        the data needed for the effect. Those data will be passed to the `predict`
        method as `data` argument.

        Parameters
        ----------
        X : pd.DataFrame
            The input DataFrame containing the exogenous variables for the training
            time indexes, if passed during fit, or for the forecasting time indexes, if
            passed during predict.

        fh : pd.Index
            The forecasting horizon as a pandas Index.

        Returns
        -------
        Any
            Any object containing the data needed for the effect. The object will be
            passed to `predict` method as `data` argument.

        Raises
        ------
        ValueError
            If the effect has not been fitted.
        """
        if not self._is_fitted and self.get_tag("requires_fit_before_transform", True):
            raise ValueError("You must call fit() before calling this method")

        if self.get_tag("filter_indexes_with_forecating_horizon_at_transform", True):
            # Filter when index level -1 is in fh
            if X is not None:
                X = X.loc[X.index.get_level_values(-1).isin(fh)]

        return self._transform(X, fh)

    def _transform(
        self,
        X: pd.DataFrame,
        fh: pd.Index,
    ) -> Any:
        """Prepare input data to be passed to numpyro model.

        This method receives the Exogenous variables DataFrame and should return a
        the data needed for the effect. Those data will be passed to the `predict`
        method as `data` argument.

        Parameters
        ----------
        X : pd.DataFrame
            The input DataFrame containing the exogenous variables for the training
            time indexes, if passed during fit, or for the forecasting time indexes, if
            passed during predict.

        fh : pd.Index
            The forecasting horizon as a pandas Index.

        Returns
        -------
        Any
            Any object containing the data needed for the effect. The object will be
            passed to `predict` method as `data` argument.
        """
        array = series_to_tensor_or_array(X)
        return array

    def predict(
        self,
        data: Dict,
        predicted_effects: Optional[Dict[str, jnp.ndarray]] = None,
        params: Optional[Dict[str, jnp.ndarray]] = None,
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
            multivariate timeseries, where T is the number of timepoints and N is the
            number of series.
        """
        if predicted_effects is None:
            predicted_effects = {}

        if params is None:
            params = self.sample_params(data, predicted_effects)

        x = self._predict(data, predicted_effects, params)

        return x

    def sample_params(
        self,
        data: Dict,
        predicted_effects: Optional[Dict[str, jnp.ndarray]] = None,
    ):
        """Sample parameters from the prior distribution.

        Parameters
        ----------
        data : Dict
            The data to be used for sampling the parameters, obtained from
            `transform` method.

        predicted_effects : Optional[Dict[str, jnp.ndarray]]
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        Dict
            A dictionary containing the sampled parameters.
        """
        if predicted_effects is None:
            predicted_effects = {}

        return self._sample_params(data, predicted_effects)

    def _sample_params(
        self,
        data: Any,
        predicted_effects: Dict[str, jnp.ndarray],
    ):
        """Sample parameters from the prior distribution.

        Should be implemented by subclasses to provide the actual sampling logic.

        Parameters
        ----------
        data : Any
            The data to be used for sampling the parameters, obtained from
            `transform` method.
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        Dict
            A dictionary containing the sampled parameters.
        """
        return {}

    def _predict(
        self, data: Dict, predicted_effects: Dict[str, jnp.ndarray], params: Dict
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
            multivariate timeseries, where T is the number of timepoints and N is the
            number of series.
        """
        raise NotImplementedError("Subclasses must implement _predict()")

    def __call__(
        self,
        data: Dict,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Optional[Dict[str, jnp.ndarray]] = None,
    ) -> jnp.ndarray:
        """Run the processes to calculate effect as a function."""
        return self.predict(data=data, predicted_effects=predicted_effects)

__call__(data, predicted_effects, params=None)

Run the processes to calculate effect as a function.

Source code in src/prophetverse/effects/base.py
def __call__(
    self,
    data: Dict,
    predicted_effects: Dict[str, jnp.ndarray],
    params: Optional[Dict[str, jnp.ndarray]] = None,
) -> jnp.ndarray:
    """Run the processes to calculate effect as a function."""
    return self.predict(data=data, predicted_effects=predicted_effects)

fit(y, X, scale=1.0)

Initialize the effect.

This method is called during fit() of the forecasting model. It receives the Exogenous variables DataFrame and should be used to initialize any necessary parameters or data structures, such as detecting the columns that match the regex pattern.

This method MUST set _input_feature_columns_names to a list of column names

Parameters:

Name Type Description Default
y DataFrame

The timeseries dataframe

required
X DataFrame

The DataFrame to initialize the effect.

required
scale float

The scale of the timeseries. For multivariate timeseries, this is a dataframe. For univariate, it is a simple float.

1.0

Returns:

Type Description
None

Raises:

Type Description
ValueError

If the effect does not support multivariate data and the DataFrame has more than one level of index.

Source code in src/prophetverse/effects/base.py
def fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1.0):
    """Initialize the effect.

    This method is called during `fit()` of the forecasting model.
    It receives the Exogenous variables DataFrame and should be used to initialize
    any necessary parameters or data structures, such as detecting the columns that
    match the regex pattern.

    This method MUST set _input_feature_columns_names to a list of column names

    Parameters
    ----------
    y : pd.DataFrame
        The timeseries dataframe

    X : pd.DataFrame
        The DataFrame to initialize the effect.

    scale : float, optional
        The scale of the timeseries. For multivariate timeseries, this is
        a dataframe. For univariate, it is a simple float.

    Returns
    -------
    None

    Raises
    ------
    ValueError
        If the effect does not support multivariate data and the DataFrame has more
        than one level of index.
    """
    if not self.get_tag("supports_multivariate", False):
        if X is not None and X.index.nlevels > 1:
            raise ValueError(
                f"The effect {self.__class__.__name__} does not "
                + "support multivariate data"
            )

    self._fit(y=y, X=X, scale=scale)
    self._is_fitted = True

predict(data, predicted_effects=None, params=None)

Apply and return the effect values.

Parameters:

Name Type Description Default
data Any

Data obtained from the transformed method.

required
predicted_effects Dict[str, ndarray]

A dictionary containing the predicted effects, by default None.

None

Returns:

Type Description
ndarray

An array with shape (T,1) for univariate timeseries, or (N, T, 1) for multivariate timeseries, where T is the number of timepoints and N is the number of series.

Source code in src/prophetverse/effects/base.py
def predict(
    self,
    data: Dict,
    predicted_effects: Optional[Dict[str, jnp.ndarray]] = None,
    params: Optional[Dict[str, jnp.ndarray]] = None,
) -> jnp.ndarray:
    """Apply and return the effect values.

    Parameters
    ----------
    data : Any
        Data obtained from the transformed method.

    predicted_effects : Dict[str, jnp.ndarray], optional
        A dictionary containing the predicted effects, by default None.

    Returns
    -------
    jnp.ndarray
        An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
        multivariate timeseries, where T is the number of timepoints and N is the
        number of series.
    """
    if predicted_effects is None:
        predicted_effects = {}

    if params is None:
        params = self.sample_params(data, predicted_effects)

    x = self._predict(data, predicted_effects, params)

    return x

sample_params(data, predicted_effects=None)

Sample parameters from the prior distribution.

Parameters:

Name Type Description Default
data Dict

The data to be used for sampling the parameters, obtained from transform method.

required
predicted_effects Optional[Dict[str, ndarray]]

A dictionary containing the predicted effects, by default None.

None

Returns:

Type Description
Dict

A dictionary containing the sampled parameters.

Source code in src/prophetverse/effects/base.py
def sample_params(
    self,
    data: Dict,
    predicted_effects: Optional[Dict[str, jnp.ndarray]] = None,
):
    """Sample parameters from the prior distribution.

    Parameters
    ----------
    data : Dict
        The data to be used for sampling the parameters, obtained from
        `transform` method.

    predicted_effects : Optional[Dict[str, jnp.ndarray]]
        A dictionary containing the predicted effects, by default None.

    Returns
    -------
    Dict
        A dictionary containing the sampled parameters.
    """
    if predicted_effects is None:
        predicted_effects = {}

    return self._sample_params(data, predicted_effects)

transform(X, fh)

Prepare input data to be passed to numpyro model.

This method receives the Exogenous variables DataFrame and should return a the data needed for the effect. Those data will be passed to the predict method as data argument.

Parameters:

Name Type Description Default
X DataFrame

The input DataFrame containing the exogenous variables for the training time indexes, if passed during fit, or for the forecasting time indexes, if passed during predict.

required
fh Index

The forecasting horizon as a pandas Index.

required

Returns:

Type Description
Any

Any object containing the data needed for the effect. The object will be passed to predict method as data argument.

Raises:

Type Description
ValueError

If the effect has not been fitted.

Source code in src/prophetverse/effects/base.py
def transform(
    self,
    X: pd.DataFrame,
    fh: pd.Index,
) -> Any:
    """Prepare input data to be passed to numpyro model.

    This method receives the Exogenous variables DataFrame and should return a
    the data needed for the effect. Those data will be passed to the `predict`
    method as `data` argument.

    Parameters
    ----------
    X : pd.DataFrame
        The input DataFrame containing the exogenous variables for the training
        time indexes, if passed during fit, or for the forecasting time indexes, if
        passed during predict.

    fh : pd.Index
        The forecasting horizon as a pandas Index.

    Returns
    -------
    Any
        Any object containing the data needed for the effect. The object will be
        passed to `predict` method as `data` argument.

    Raises
    ------
    ValueError
        If the effect has not been fitted.
    """
    if not self._is_fitted and self.get_tag("requires_fit_before_transform", True):
        raise ValueError("You must call fit() before calling this method")

    if self.get_tag("filter_indexes_with_forecating_horizon_at_transform", True):
        # Filter when index level -1 is in fh
        if X is not None:
            X = X.loc[X.index.get_level_values(-1).isin(fh)]

    return self._transform(X, fh)

ChainedEffects

Bases: BaseMetaEstimatorMixin, BaseEffect

Chains multiple effects sequentially, applying them one after the other.

Parameters:

Name Type Description Default
steps List[BaseEffect]

A list of effects to be applied sequentially.

required
Source code in src/prophetverse/effects/chain.py
class ChainedEffects(BaseMetaEstimatorMixin, BaseEffect):
    """
    Chains multiple effects sequentially, applying them one after the other.

    Parameters
    ----------
    steps : List[BaseEffect]
        A list of effects to be applied sequentially.
    """

    _tags = {
        "supports_multivariate": True,
        "skip_predict_if_no_match": True,
        "filter_indexes_with_forecating_horizon_at_transform": True,
    }

    def __init__(self, steps: List[BaseEffect]):
        self.steps = steps
        super().__init__()

    def _fit(self, y: Any, X: Any, scale: float = 1.0):
        """
        Fit all chained effects sequentially.

        Parameters
        ----------
        y : Any
            Target data (e.g., time series values).
        X : Any
            Exogenous variables.
        scale : float, optional
            Scale of the timeseries.
        """
        for effect in self.steps:
            effect.fit(y, X, scale)

    def _transform(self, X: Any, fh: Any) -> Any:
        """
        Transform input data sequentially through all chained effects.

        Parameters
        ----------
        X : Any
            Input data (e.g., exogenous variables).
        fh : Any
            Forecasting horizon.

        Returns
        -------
        Any
            Transformed data after applying all effects.
        """
        output = X
        output = self.steps[0].transform(output, fh)
        return output

    def _sample_params(
        self, data: jnp.ndarray, predicted_effects: Dict[str, jnp.ndarray]
    ) -> Dict[str, jnp.ndarray]:
        """
        Sample parameters for all chained effects.

        Parameters
        ----------
        data : jnp.ndarray
            Data obtained from the transformed method.
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects.

        Returns
        -------
        Dict[str, jnp.ndarray]
            A dictionary containing the sampled parameters for all effects.
        """
        params = {}
        for idx, effect in enumerate(self.steps):
            with handlers.scope(prefix=f"{idx}"):
                effect_params = effect.sample_params(data, predicted_effects)
            params[f"effect_{idx}"] = effect_params
        return params

    def _predict(
        self,
        data: jnp.ndarray,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, Dict[str, jnp.ndarray]],
    ) -> jnp.ndarray:
        """
        Apply all chained effects sequentially.

        Parameters
        ----------
        data : jnp.ndarray
            Data obtained from the transformed method (shape: T, 1).
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects.
        params : Dict[str, Dict[str, jnp.ndarray]]
            A dictionary containing the sampled parameters for each effect.

        Returns
        -------
        jnp.ndarray
            The transformed data after applying all effects.
        """
        output = data
        for idx, effect in enumerate(self.steps):
            effect_params = params[f"effect_{idx}"]
            output = effect._predict(output, predicted_effects, effect_params)
        return output

    def _coerce_to_named_object_tuples(self, objs, clone=False, make_unique=True):
        """Coerce sequence of objects or named objects to list of (str, obj) tuples.

        Input that is sequence of objects, list of (str, obj) tuples or
        dict[str, object] will be coerced to list of (str, obj) tuples on return.

        Parameters
        ----------
        objs : list of objects, list of (str, object tuples) or dict[str, object]
            The input should be coerced to list of (str, object) tuples. Should
            be a sequence of objects, or follow named object API.
        clone : bool, default=False.
            Whether objects in the returned list of (str, object) tuples are
            cloned (True) or references (False).
        make_unique : bool, default=True
            Whether the str names in the returned list of (str, object) tuples
            should be coerced to unique str values (if str names in input
            are already unique they will not be changed).

        Returns
        -------
        list[tuple[str, BaseObject]]
            List of tuples following named object API.

            - If `objs` was already a list of (str, object) tuples then either the
              same named objects (as with other cases cloned versions are
              returned if ``clone=True``).
            - If `objs` was a dict[str, object] then the named objects are unpacked
              into a list of (str, object) tuples.
            - If `objs` was a list of objects then string names were generated based
               on the object's class names (with coercion to unique strings if
               necessary).
        """
        objs = [(f"effect_{idx}", obj) for idx, obj in enumerate(objs)]
        return super()._coerce_to_named_object_tuples(objs, clone, make_unique)

ExactLikelihood

Bases: BaseEffect

Wrap an effect and applies a normal likelihood to its output.

This class uses an input as a reference for the effect, and applies a normal likelihood to the output of the effect.

Parameters:

Name Type Description Default
effect_name str

The effect to use in the likelihood.

required
reference_df DataFrame

A dataframe with the reference values. Should be in sktime format, and must have the same index as the input data.

required
prior_scale float

The scale of the prior distribution for the likelihood.

required
Source code in src/prophetverse/effects/exact_likelihood.py
class ExactLikelihood(BaseEffect):
    """Wrap an effect and applies a normal likelihood to its output.

    This class uses an input as a reference for the effect, and applies a normal
    likelihood to the output of the effect.

    Parameters
    ----------
    effect_name : str
        The effect to use in the likelihood.
    reference_df : pd.DataFrame
        A dataframe with the reference values. Should be in sktime format, and must
        have the same index as the input data.
    prior_scale : float
        The scale of the prior distribution for the likelihood.
    """

    _tags = {"skip_predict_if_no_match": False, "supports_multivariate": False}

    def __init__(
        self,
        effect_name: str,
        reference_df: pd.DataFrame,
        prior_scale: float,
    ):

        self.effect_name = effect_name
        self.reference_df = reference_df
        self.prior_scale = prior_scale

        assert self.prior_scale > 0, "prior_scale must be greater than 0"

        super().__init__()

    def _fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1):
        """Initialize the effect.

        This method is called during `fit()` of the forecasting model.
        It receives the Exogenous variables DataFrame and should be used to initialize
        any necessary parameters or data structures, such as detecting the columns that
        match the regex pattern.

        This method MUST set _input_feature_columns_names to a list of column names

        Parameters
        ----------
        y : pd.DataFrame
            The timeseries dataframe

        X : pd.DataFrame
            The DataFrame to initialize the effect.

        scale : float, optional
            The scale of the timeseries. For multivariate timeseries, this is
            a dataframe. For univariate, it is a simple float.

        Returns
        -------
        None
        """
        self.timeseries_scale = scale

    def _transform(self, X: pd.DataFrame, fh: pd.Index) -> Dict[str, Any]:
        """Prepare input data to be passed to numpyro model.

        Returns a dictionary with the data for the lift and for the inner effect.

        Parameters
        ----------
        X : pd.DataFrame
            The input DataFrame containing the exogenous variables for the training
            time indexes, if passed during fit, or for the forecasting time indexes, if
            passed during predict.

        fh : pd.Index
            The forecasting horizon as a pandas Index.

        Returns
        -------
        Dict[str, Any]
            Dictionary with data for the lift and for the inner effect
        """
        data_dict = {}

        X_lift = self.reference_df.reindex(fh, fill_value=jnp.nan)
        lift_array = series_to_tensor_or_array(X_lift)
        data_dict["observed_reference_value"] = lift_array / self.timeseries_scale
        data_dict["obs_mask"] = ~jnp.isnan(data_dict["observed_reference_value"])

        return data_dict

    def _predict(
        self,
        data: Dict,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries.
        """
        observed_reference_value = data["observed_reference_value"]
        obs_mask = data["obs_mask"]

        x = predicted_effects[self.effect_name]

        with numpyro.handlers.mask(mask=obs_mask):
            numpyro.sample(
                "exact_likelihood:ignore",
                dist.Normal(x, self.prior_scale),
                obs=observed_reference_value,
            )

        return x

GeometricAdstockEffect

Bases: BaseEffect

Represents a Geometric Adstock effect in a time series model.

Parameters:

Name Type Description Default
decay_prior Distribution

Prior distribution for the decay parameter (controls the rate of decay).

None
rase_error_if_fh_changes bool

Whether to raise an error if the forecasting horizon changes during predict

required
Source code in src/prophetverse/effects/adstock.py
class GeometricAdstockEffect(BaseEffect):
    """Represents a Geometric Adstock effect in a time series model.

    Parameters
    ----------
    decay_prior : Distribution, optional
        Prior distribution for the decay parameter (controls the rate of decay).
    rase_error_if_fh_changes : bool, optional
        Whether to raise an error if the forecasting horizon changes during predict
    """

    _tags = {
        "supports_multivariate": False,
        "skip_predict_if_no_match": True,
        "filter_indexes_with_forecating_horizon_at_transform": True,
    }

    def __init__(
        self,
        decay_prior: dist.Distribution = None,
        raise_error_if_fh_changes: bool = True,
    ):
        self.decay_prior = decay_prior or dist.Beta(
            2, 2
        )  # Default Beta distribution for decay rate.
        self.raise_errror_if_fh_changes = raise_error_if_fh_changes
        super().__init__()

        self._min_date = None

    def _transform(self, X, fh):
        """Transform the dataframe and horizon to array.

        Parameters
        ----------
        X : pd.DataFrame
            dataframe with exogenous variables
        fh : pd.Index
            Forecast horizon

        Returns
        -------
        jnp.ndarray
            the array with data for _predict

        Raises
        ------
        ValueError
            If the forecasting horizon is different during predict and fit.
        """
        if self._min_date is None:
            self._min_date = X.index.min()
        else:
            if self._min_date != X.index.min() and self.raise_errror_if_fh_changes:
                raise ValueError(
                    "The X dataframe and forecat horizon"
                    "must be start at the same"
                    "date as the previous one"
                )
        return super()._transform(X, fh)

    def _sample_params(
        self, data: jnp.ndarray, predicted_effects: Dict[str, jnp.ndarray]
    ) -> Dict[str, jnp.ndarray]:
        """
        Sample the parameters of the effect.

        Parameters
        ----------
        data : jnp.ndarray
            Data obtained from the transformed method.
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects.

        Returns
        -------
        Dict[str, jnp.ndarray]
            A dictionary containing the sampled parameters of the effect.
        """
        return {
            "decay": numpyro.sample("decay", self.decay_prior),
        }

    def _predict(
        self,
        data: jnp.ndarray,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """
        Apply and return the geometric adstock effect values.

        Parameters
        ----------
        data : jnp.ndarray
            Data obtained from the transformed method (shape: T, 1).
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects.
        params : Dict[str, jnp.ndarray]
            A dictionary containing the sampled parameters of the effect.

        Returns
        -------
        jnp.ndarray
            An array with shape (T, 1) for univariate timeseries.
        """
        decay = params["decay"]

        # Apply geometric adstock using jax.lax.scan for efficiency
        def adstock_step(carry, current):
            prev_adstock = carry
            new_adstock = current + decay * prev_adstock
            return new_adstock, new_adstock

        _, adstock = jax.lax.scan(
            adstock_step, init=jnp.array([0], dtype=data.dtype), xs=data
        )
        return adstock.reshape(-1, 1)

HillEffect

Bases: BaseAdditiveOrMultiplicativeEffect

Represents a Hill effect in a time series model.

Parameters:

Name Type Description Default
half_max_prior Distribution

Prior distribution for the half-maximum parameter

None
slope_prior Distribution

Prior distribution for the slope parameter

None
max_effect_prior Distribution

Prior distribution for the maximum effect parameter

None
effect_mode effects_application

Mode of the effect (either "additive" or "multiplicative")

'multiplicative'
Source code in src/prophetverse/effects/hill.py
class HillEffect(BaseAdditiveOrMultiplicativeEffect):
    """Represents a Hill effect in a time series model.

    Parameters
    ----------
    half_max_prior : Distribution, optional
        Prior distribution for the half-maximum parameter
    slope_prior : Distribution, optional
        Prior distribution for the slope parameter
    max_effect_prior : Distribution, optional
        Prior distribution for the maximum effect parameter
    effect_mode : effects_application, optional
        Mode of the effect (either "additive" or "multiplicative")
    """

    def __init__(
        self,
        effect_mode: EFFECT_APPLICATION_TYPE = "multiplicative",
        half_max_prior: Optional[Distribution] = None,
        slope_prior: Optional[Distribution] = None,
        max_effect_prior: Optional[Distribution] = None,
    ):
        self.half_max_prior = half_max_prior or dist.Gamma(1, 1)
        self.slope_prior = slope_prior or dist.HalfNormal(10)
        self.max_effect_prior = max_effect_prior or dist.Gamma(1, 1)

        super().__init__(effect_mode=effect_mode)

    def _sample_params(
        self, data, predicted_effects: Dict[str, jnp.ndarray]
    ) -> Dict[str, jnp.ndarray]:
        """
        Sample the parameters of the effect.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects

        Returns
        -------
        Dict[str, jnp.ndarray]
            A dictionary containing the sampled parameters of the effect.
        """
        return {
            "half_max": numpyro.sample("half_max", self.half_max_prior),
            "slope": numpyro.sample("slope", self.slope_prior),
            "max_effect": numpyro.sample("max_effect", self.max_effect_prior),
        }

    def _predict(
        self,
        data: Dict[str, jnp.ndarray],
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries.
        """
        half_max = params["half_max"]
        slope = params["slope"]
        max_effect = params["max_effect"]

        data = jnp.clip(data, 1e-9, None)
        x = _exponent_safe(data / half_max, -slope)
        effect = max_effect / (1 + x)
        return effect

LiftExperimentLikelihood

Bases: BaseEffect

Wrap an effect and applies a normal likelihood to its output.

This class uses an input as a reference for the effect, and applies a normal likelihood to the output of the effect.

Parameters:

Name Type Description Default
effect BaseEffect

The effect to wrap.

required
lift_test_results DataFrame

A dataframe with the lift test results. Should be in sktime format, and must have the same index as the input data.

required
prior_scale float

The scale of the prior distribution for the likelihood.

required
Source code in src/prophetverse/effects/lift_likelihood.py
class LiftExperimentLikelihood(BaseEffect):
    """Wrap an effect and applies a normal likelihood to its output.

    This class uses an input as a reference for the effect, and applies a normal
    likelihood to the output of the effect.

    Parameters
    ----------
    effect : BaseEffect
        The effect to wrap.
    lift_test_results : pd.DataFrame
        A dataframe with the lift test results. Should be in sktime format, and must
        have the same index as the input data.
    prior_scale : float
        The scale of the prior distribution for the likelihood.
    """

    _tags = {"skip_predict_if_no_match": False, "supports_multivariate": False}

    def __init__(
        self,
        effect: BaseEffect,
        lift_test_results: pd.DataFrame,
        prior_scale: float,
        likelihood_scale: float = 1,
    ):

        self.effect = effect
        self.lift_test_results = lift_test_results
        self.prior_scale = prior_scale
        self.likelihood_scale = likelihood_scale

        super().__init__()

        assert self.prior_scale > 0, "prior_scale must be greater than 0"

        mandatory_columns = ["x_start", "x_end", "lift"]
        assert all(
            column in self.lift_test_results.columns for column in mandatory_columns
        ), f"lift_test_results must have the following columns: {mandatory_columns}"

    def fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1):
        """Initialize the effect.

        This method is called during `fit()` of the forecasting model.
        It receives the Exogenous variables DataFrame and should be used to initialize
        any necessary parameters or data structures, such as detecting the columns that
        match the regex pattern.

        This method MUST set _input_feature_columns_names to a list of column names

        Parameters
        ----------
        y : pd.DataFrame
            The timeseries dataframe

        X : pd.DataFrame
            The DataFrame to initialize the effect.

        scale : float, optional
            The scale of the timeseries. For multivariate timeseries, this is
            a dataframe. For univariate, it is a simple float.

        Returns
        -------
        None
        """
        self.effect_ = self.effect.clone()
        self.effect_.fit(X=X, y=y, scale=scale)
        self.timeseries_scale = scale
        super().fit(X=X, y=y, scale=scale)

    def _transform(self, X: pd.DataFrame, fh: pd.Index) -> Dict[str, Any]:
        """Prepare input data to be passed to numpyro model.

        Returns a dictionary with the data for the lift and for the inner effect.

        Parameters
        ----------
        X : pd.DataFrame
            The input DataFrame containing the exogenous variables for the training
            time indexes, if passed during fit, or for the forecasting time indexes, if
            passed during predict.

        fh : pd.Index
            The forecasting horizon as a pandas Index.

        Returns
        -------
        Dict[str, Any]
            Dictionary with data for the lift and for the inner effect
        """
        data_dict = {}
        data_dict["inner_effect_data"] = self.effect_._transform(X, fh=fh)

        # Check if fh and self.lift_test_results have same index type
        if not isinstance(fh, self.lift_test_results.index.__class__):
            raise TypeError(
                "fh and self.lift_test_results must have the same index type"
            )
        X_lift = self.lift_test_results.reindex(fh, fill_value=jnp.nan)

        data_dict["observed_lift"] = (
            series_to_tensor_or_array(X_lift["lift"].dropna()) / self.timeseries_scale
        )
        data_dict["x_start"] = series_to_tensor_or_array(X_lift["x_start"].dropna())
        data_dict["x_end"] = series_to_tensor_or_array(X_lift["x_end"].dropna())
        data_dict["obs_mask"] = ~jnp.isnan(series_to_tensor_or_array(X_lift["lift"]))

        return data_dict

    def _sample_params(self, data, predicted_effects):
        """
        Sample the parameters of the effect.

        Calls the sample_params method of the inner effect.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.
        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects

        Returns
        -------
        Dict[str, jnp.ndarray]
            A dictionary containing the sampled parameters of the effect.
        """
        return self.effect_.sample_params(
            data=data["inner_effect_data"], predicted_effects=predicted_effects
        )

    def _predict(
        self,
        data: Dict,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries.
        """
        observed_lift = data["observed_lift"].reshape((-1, 1))
        x_start = data["x_start"].reshape((-1, 1))
        x_end = data["x_end"].reshape((-1, 1))
        obs_mask = data["obs_mask"]

        predicted_effects_masked = {
            k: v[obs_mask] for k, v in predicted_effects.items()
        }

        # Call the effect a first time
        x = self.effect_.predict(
            data=data["inner_effect_data"],
            predicted_effects=predicted_effects,
            params=params,
        )

        # Get the start and end values
        y_start = self.effect_.predict(
            data=x_start,
            predicted_effects=predicted_effects_masked,
            params=params,
        )
        y_end = self.effect_.predict(
            data=x_end, predicted_effects=predicted_effects_masked, params=params
        )

        # Calculate the delta_y
        delta_y = jnp.abs(y_end - y_start)

        with numpyro.handlers.scale(scale=self.likelihood_scale):
            distribution = GammaReparametrized(delta_y, self.prior_scale)

            # Add :ignore so that the model removes this
            # sample when organizing the output dataframe
            numpyro.sample(
                "lift_experiment:ignore",
                distribution,
                obs=observed_lift,
            )

        return x

fit(y, X, scale=1)

Initialize the effect.

This method is called during fit() of the forecasting model. It receives the Exogenous variables DataFrame and should be used to initialize any necessary parameters or data structures, such as detecting the columns that match the regex pattern.

This method MUST set _input_feature_columns_names to a list of column names

Parameters:

Name Type Description Default
y DataFrame

The timeseries dataframe

required
X DataFrame

The DataFrame to initialize the effect.

required
scale float

The scale of the timeseries. For multivariate timeseries, this is a dataframe. For univariate, it is a simple float.

1

Returns:

Type Description
None
Source code in src/prophetverse/effects/lift_likelihood.py
def fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1):
    """Initialize the effect.

    This method is called during `fit()` of the forecasting model.
    It receives the Exogenous variables DataFrame and should be used to initialize
    any necessary parameters or data structures, such as detecting the columns that
    match the regex pattern.

    This method MUST set _input_feature_columns_names to a list of column names

    Parameters
    ----------
    y : pd.DataFrame
        The timeseries dataframe

    X : pd.DataFrame
        The DataFrame to initialize the effect.

    scale : float, optional
        The scale of the timeseries. For multivariate timeseries, this is
        a dataframe. For univariate, it is a simple float.

    Returns
    -------
    None
    """
    self.effect_ = self.effect.clone()
    self.effect_.fit(X=X, y=y, scale=scale)
    self.timeseries_scale = scale
    super().fit(X=X, y=y, scale=scale)

LinearEffect

Bases: BaseAdditiveOrMultiplicativeEffect

Represents a linear effect in a hierarchical prophet model.

Parameters:

Name Type Description Default
prior Distribution

A numpyro distribution to use as prior. Defaults to dist.Normal(0, 1)

None
effect_mode effects_application

Either "multiplicative" or "additive" by default "multiplicative".

'multiplicative'
Source code in src/prophetverse/effects/linear.py
class LinearEffect(BaseAdditiveOrMultiplicativeEffect):
    """Represents a linear effect in a hierarchical prophet model.

    Parameters
    ----------
    prior : Distribution, optional
        A numpyro distribution to use as prior. Defaults to dist.Normal(0, 1)
    effect_mode : effects_application, optional
        Either "multiplicative" or "additive" by default "multiplicative".
    """

    _tags = {
        "supports_multivariate": True,
    }

    def __init__(
        self,
        effect_mode: EFFECT_APPLICATION_TYPE = "multiplicative",
        prior: Optional[Distribution] = None,
    ):
        self.prior = prior or dist.Normal(0, 0.1)

        super().__init__(effect_mode=effect_mode)

    def _sample_params(self, data, predicted_effects):

        n_features = data.shape[-1]

        with numpyro.plate("features_plate", n_features, dim=-1):
            coefficients = numpyro.sample("coefs", self.prior)

        return {
            "coefficients": coefficients,
        }

    def _predict(
        self,
        data: Any,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray]
            A dictionary containing the predicted effects

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
            multivariate timeseries, where T is the number of timepoints and N is the
            number of series.
        """
        coefficients = params["coefficients"]

        if coefficients.ndim == 1:
            coefficients = jnp.expand_dims(coefficients, axis=-1)

        if data.ndim == 3 and coefficients.ndim == 2:
            coefficients = jnp.expand_dims(coefficients, axis=0)

        return matrix_multiplication(data, coefficients)

LinearFourierSeasonality

Bases: BaseEffect

Linear Fourier Seasonality effect.

Compute the linear seasonality using Fourier features.

Parameters:

Name Type Description Default
sp_list List[float]

List of seasonal periods.

required
fourier_terms_list List[int]

List of number of Fourier terms to use for each seasonal period.

required
freq str

Frequency of the time series. Example: "D" for daily, "W" for weekly, etc.

required
prior_scale float

Scale of the prior distribution for the effect, by default 1.0.

1.0
effect_mode str

Either "multiplicative" or "additive" by default "additive".

'additive'
Source code in src/prophetverse/effects/fourier.py
class LinearFourierSeasonality(BaseEffect):
    """Linear Fourier Seasonality effect.

    Compute the linear seasonality using Fourier features.

    Parameters
    ----------
    sp_list : List[float]
        List of seasonal periods.
    fourier_terms_list : List[int]
        List of number of Fourier terms to use for each seasonal period.
    freq : str
        Frequency of the time series. Example: "D" for daily, "W" for weekly, etc.
    prior_scale : float, optional
        Scale of the prior distribution for the effect, by default 1.0.
    effect_mode : str, optional
        Either "multiplicative" or "additive" by default "additive".
    """

    _tags = {
        # Supports multivariate data? Can this
        # Effect be used with Multiariate prophet?
        "supports_multivariate": True,
        # If no columns are found, should
        # _predict be skipped?
        "skip_predict_if_no_match": False,
    }

    def __init__(
        self,
        sp_list: List[float],
        fourier_terms_list: List[int],
        freq: Union[str, None],
        prior_scale: float = 1.0,
        effect_mode: EFFECT_APPLICATION_TYPE = "additive",
    ):
        self.sp_list = sp_list
        self.fourier_terms_list = fourier_terms_list
        self.freq = freq
        self.prior_scale = prior_scale
        self.effect_mode = effect_mode
        self.expand_column_per_level_ = None  # type: Union[None,ExpandColumnPerLevel]

    def _fit(self, y: pd.DataFrame, X: pd.DataFrame, scale: float = 1.0):
        """Customize the initialization of the effect.

        Fit the fourier feature transformer and the linear effect.

        Parameters
        ----------
        y : pd.DataFrame
            The timeseries dataframe

        X : pd.DataFrame
            The DataFrame to initialize the effect.

        scale: float, optional
            The scale of the timeseries, by default 1.0.
        """
        self.fourier_features_ = FourierFeatures(
            sp_list=self.sp_list,
            fourier_terms_list=self.fourier_terms_list,
            freq=self.freq,
            keep_original_columns=False,
        )

        self.fourier_features_.fit(X=X)
        X = self.fourier_features_.transform(X)

        if X.index.nlevels > 1 and X.index.droplevel(-1).nunique() > 1:
            self.expand_column_per_level_ = ExpandColumnPerLevel([".*"]).fit(X=X)
            X = self.expand_column_per_level_.transform(X)  # type: ignore

        self.linear_effect_ = LinearEffect(
            prior=dist.Normal(0, self.prior_scale), effect_mode=self.effect_mode
        )

        self.linear_effect_.fit(X=X, y=y, scale=scale)

    def _transform(self, X: pd.DataFrame, fh: pd.Index) -> jnp.ndarray:
        """Prepare input data to be passed to numpyro model.

        This method return a jnp.ndarray of sines and cosines of the given
        frequencies.

        Parameters
        ----------
        X : pd.DataFrame
            The input DataFrame containing the exogenous variables for the training
            time indexes, if passed during fit, or for the forecasting time indexes, if
            passed during predict.

        fh : pd.Index
            The forecasting horizon as a pandas Index.

        Returns
        -------
        jnp.ndarray
            Any object containing the data needed for the effect. The object will be
            passed to `predict` method as `data` argument.
        """
        X = self.fourier_features_.transform(X)

        if self.expand_column_per_level_ is not None:
            X = self.expand_column_per_level_.transform(X)

        array = self.linear_effect_.transform(X, fh)

        return array

    def _sample_params(self, data, predicted_effects=None):
        """Sample parameters from the prior distribution.

        Parameters
        ----------
        data : jnp.ndarray
            The data to be used for sampling the parameters.

        Returns
        -------
        dict
            A dictionary containing the sampled parameters.
        """
        return self.linear_effect_.sample_params(data, predicted_effects)

    def _predict(
        self,
        data: Dict,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
            multivariate timeseries, where T is the number of timepoints and N is the
            number of series.
        """
        return self.linear_effect_.predict(
            data=data,
            predicted_effects=predicted_effects,
            params=params,
        )

LogEffect

Bases: BaseAdditiveOrMultiplicativeEffect

Represents a log effect as effect = scale * log(rate * data + 1).

Parameters:

Name Type Description Default
scale_prior Optional[Distribution]

The prior distribution for the scale parameter., by default Gamma

None
rate_prior Optional[Distribution]

The prior distribution for the rate parameter., by default Gamma

None
effect_mode effects_application

Either "additive" or "multiplicative", by default "multiplicative"

'multiplicative'
Source code in src/prophetverse/effects/log.py
class LogEffect(BaseAdditiveOrMultiplicativeEffect):
    """Represents a log effect as effect = scale * log(rate * data + 1).

    Parameters
    ----------
    scale_prior : Optional[Distribution], optional
        The prior distribution for the scale parameter., by default Gamma
    rate_prior : Optional[Distribution], optional
        The prior distribution for the rate parameter., by default Gamma
    effect_mode : effects_application, optional
        Either "additive" or "multiplicative", by default "multiplicative"
    """

    def __init__(
        self,
        effect_mode: EFFECT_APPLICATION_TYPE = "multiplicative",
        scale_prior: Optional[Distribution] = None,
        rate_prior: Optional[Distribution] = None,
    ):
        self.scale_prior = scale_prior or dist.Gamma(1, 1)
        self.rate_prior = rate_prior or dist.Gamma(1, 1)
        super().__init__(effect_mode=effect_mode)

    def _sample_params(self, data, predicted_effects):
        scale = numpyro.sample("log_scale", self.scale_prior)
        rate = numpyro.sample("log_rate", self.rate_prior)
        return {
            "scale": scale,
            "rate": rate,
        }

    def _predict(  # type: ignore[override]
        self,
        data: jnp.ndarray,
        predicted_effects: Dict[str, jnp.ndarray],
        params: Dict[str, jnp.ndarray],
    ) -> jnp.ndarray:
        """Apply and return the effect values.

        Parameters
        ----------
        data : Any
            Data obtained from the transformed method.

        predicted_effects : Dict[str, jnp.ndarray], optional
            A dictionary containing the predicted effects, by default None.

        Returns
        -------
        jnp.ndarray
            An array with shape (T,1) for univariate timeseries, or (N, T, 1) for
            multivariate timeseries, where T is the number of timepoints and N is the
            number of series.
        """
        scale = params["scale"]
        rate = params["rate"]

        effect = scale * jnp.log(jnp.clip(rate * data + 1, 1e-8, None))

        return effect